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We investigate pfaffian trial wavefunctions with singlet and triplet pair orbitals by quantum Monte Carlo
methods. We present mathematical identities and the key algebraic properties necessary for efficient evaluation
of pfaffians. Following upon our previous study �Bajdich et al., Phys. Rev. Lett. 96, 130201 �2006��, we
explore the possibilities of expanding the wavefunction in linear combinations of pfaffians. We observe that
molecular systems require much larger expansions than atomic systems and linear combinations of a few
pfaffians lead to rather small gains in correlation energy. We also test the wavefunction based on fully anti-
symmetrized product of independent pair orbitals. Despite its seemingly large variational potential, we do not
observe additional gains in correlation energy. We find that pfaffians lead to substantial improvements in
fermion nodes when compared to Hartree-Fock wavefunctions and exhibit the minimal number of two nodal
domains in agreement with recent results on fermion nodes topology. We analyze the nodal structure differ-
ences of Hartree-Fock, pfaffian, and essentially exact large-scale configuration interaction wavefunctions.
Finally, we combine the recently proposed form of backflow correlations �Drummond et al., J. Phys. Chem.
124, 22401 �2006�; Rios et al., Phys. Rev. E. 74, 066701 �2006�� with both determinantal and pfaffian based
wavefunctions.
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I. INTRODUCTION

One of the most promising many-body electronic struc-
ture approaches is the quantum Monte Carlo �QMC� method,
which employs stochastic techniques for solving the station-
ary Schrödinger equation and for evaluation of expectation
values.4–7 QMC methodology has an important virtue that it
enables us to test and employ variety of many-body wave-
functions �WFs� with explicit electron-electron correlation.
This opens a possibility to explore wavefunctions, which are
very difficult to use with traditional methods based on one-
particle basis expansions and on orthogonality of one-
particle orbitals. These high accuracy wavefunctions enable
us to understand the nature of many-body effects and also to
decrease the QMC fixed-node errors which come from the
necessity to circumvent the fermion sign problem.8,9 Fixed-
node QMC has been very effective in providing high accu-
racy results for many real systems, such as molecules, clus-
ters, and solids with hundreds of valence electrons. Typically,
for cohesive and binding energies, band gaps, and other en-
ergy differences, the agreement with experiments is within
1%–3%.7,10 The key challenge for successful application of
fixed-node QMC is to develop methods, which can eliminate
the fixed-node bias or at least make it smaller than experi-
mental error bars for the given quantity. This is a difficult
task, once we realize that the fermion nodes �the subset of
position space where the wavefunction vanishes� are compli-
cated high-dimensional manifolds determined by the many-
body effects. So far, improvement in the accuracy of trial
wavefunctions has proved to be one realistic approach to
finding better approximations for the nodes. This approach

has an additional benefit in forcing us to think about the
relevant correlation effects and their compact and computa-
tionally efficient description.

The commonly used QMC trial wave functions have the
Slater-Jastrow form, which can be written as �T
=�A exp�Ucorr�, where �A is the antisymmetric part while
Ucorr describes the electron-electron and higher-order corre-
lations. The antisymmetric component is typically one or a
linear combination of several Slater determinants of one-
particle orbitals, such as configuration interaction �CI�
expansion.11 To overcome the limit of one-particle orbitals,
the two-particle or pair orbital has been suggested. In con-
densed systems, one such example is the Bardeen-Cooper-
Schrieffer �BCS� wavefunction,12 which is an antisymme-
trized product of identical singlet pairs.

The pair orbital is also referred to as geminal and the
resulting wavefunction as the antisymmetrized product of
geminals �APG�.13,14 In its full variational limit, say, for a
system with M pairs of fermions, such a wavefunction is an
antisymmetrized product of M distinct pair orbitals. How-
ever, this freedom leads to computationally very demanding
form, since the number of terms grows exponentially with
the number of pairs. In this work, we have actually tested the
APG wavefunctions on a few-particle systems, as will be
reported later. On the other hand, if all the geminals in the
product are identical, then this special case of APG is called
the antisymmetrized geminal power �AGP�.15 It can be
shown that for a singlet type geminal with a fixed number of
particles, the AGP and BCS wavefunctions are identical16

and can be expressed in the form of single determinant.17

The BCS wavefunction has been recently used to calcu-
late several atoms and molecules as well as superfluid Fermi
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gases.18–20 The results show promising gains when compared
to the single-determinant Hartree-Fock �HF� wavefunctions;
nevertheless, in partially spin-polarized systems, the im-
provements are less pronounced due to the lack of pair cor-
relations in the spin-polarized subspace.18,19 The spin-
polarized �triplet� pairing wavefunctions naturally lead to
pfaffians �instead of determinants�. In this respect, pfaffians
have been mentioned a few times and applied to model
systems21–23 in the past.

In this paper, we follow upon our previous letter,1 in
which we have proposed the description of electron systems
by pfaffian wavefunctions with variational freedom beyond
the HF and BCS wavefunctions. The pfaffian form proved to
be the right algebraic form, which can accommodate pair
orbitals with singlet and triplet pair channels, together with
unpaired one-particle orbitals, into a single compact wave-
function. Here, we present a set of key mathematical identi-
ties and formulas for pfaffians, some of them derived for the
first time. We investigate generalizations to linear combina-
tions of pfaffians and to antisymmetrized independent singlet
pairs and compare the results from the point of view of re-
covered energies and compactness of the wavefunctions. We
analyze the fermion nodes for some of the wavefunctions
and point out the topological differences between HF, pfaff-
ian, and essentially exact wavefunctions for a given test ex-
ample. Finally, we explore the possibility of further improve-
ments of nodal structure of pfaffians by using the recently
proposed form of backflow correlations.2,3

II. ALGEBRA OF PFAFFIANS

A. Definitions

First introduced by Cayley in 1852,24 the pfaffian is
named after German mathematician Johann Friedrich Pfaff.
Given a 2n�2n skew-symmetric matrix A= �ai,j�, the pfaff-
ian of A is defined as antisymmetrized product

pf�A� = A�a1,2a3,4 . . . a2n−1,2n� = �
�

sgn���ai1,j1
ai2,j2

. . . ain,jn
,

�1�

where the sum runs over all possible �2n−1�!! pair partitions
�= ��i1 , j1� , �i2 , j2� , . . . , �in , jn�� of �1,2 , . . . ,2n� with ik� jk.
The sign of permutation associated with the partition � is
denoted as sgn���. The pfaffian for a matrix of odd order
equals to zero. The following example gives pfaffian of a
A�4�4� skew-symmetric matrix:

pf�
0 a12 a13 a14

− a12 0 a23 a24

− a13 − a23 0 a34

− a14 − a24 − a34 0
	 = a12a34 − a13a24 + a14a23.

�2�

It can be also evaluated recursively as

pf�A� = �
j=2

2n

a1,j�
�1,j

sgn��1,j�ai1,j1
ai2,j2

. . . ain−1,jn−1


 �
j=2

2n

a1,jPc�a1,j� , �3�

where �1,j is partition with ik , jk�1, j and Pc�a1,j� is defined
as pfaffian cofactor of a1,j. The cofactor for an element aj,k is
given by a formula

Pc�aj,k� = �− 1� j+k+1pf�A�j,k; j,k�� , �4�

where the matrix A�j ,k ; j ,k� has the rank 2�n−1��2�n−1�
and is obtained from A by eliminating rows j and k and
columns j and k.

B. Calculation of a pfaffian

There exist several identities involving pfaffians and de-
terminants. For any 2n�2n skew-symmetric matrix A and
arbitrary matrices B�2n�2n� and M�n�n�, we have the fol-
lowing relations:

pf�AT� = �− 1�npf�A� �5a�

pf�A�2 = det�A� �5b�

pf�A1 0

0 A2
� = pf�A1�pf�A2� �5c�

pf�BABT� = det�B�pf�A� �5d�

pf� 0 M

− MT 0
� = �− 1�n�n−1�/2 det�M� �5e�

Proofs. �5a� Each permutation contains product of n pairs
resulting in an overall �−1�n factor. �5b� This is well-known
Cayley’s relationship between the pfaffian and the determi-
nant of a skew-symmetric matrix. Since it has been proved
many times before in variety of ways,25–27 we do not give
this proof here. Using this relation, we rather prove a more
general version of Cayley’s identity27 in the Appendix, which
we were not able to find anywhere else except in original
Cayley’s paper.27 �5c� Use the expansion by pfaffian cofac-
tors. �5d� By squaring �5d�, using Eq. �5b�, and taking the
square root, one finds pf�BABT�= �det�B�pf�A�. Substituting
the identity matrix I for B, one finds � to be the correct sign.
�5e� Assume

B = 
M 0

0 I
� and A = 
 0 I

− I 0
�

in Eq. �5d�. The overall sign is given by value of pf�A�.
The identities listed above imply several important prop-

erties. First, Eqs. �5d� and �5e� show that every determinant
can be written as a pfaffian, but on the contrary, only the
absolute value of pfaffian can be given by determinant �Eq.
�5b��. The pfaffian is therefore a generalized form of the
determinant. Second, by substituting suitable matrices28 for
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M in Eq. �5d�, one can verify the following three properties
of pfaffians,29 similar to the well-known properties of deter-
minant:

�a� multiplication of a row and a column by a constant is
equivalent to multiplication of pfaffian by the same constant,

�b� simultaneous interchange of two different rows and
corresponding columns changes the sign of pfaffian, and

�c� a multiple of a row and corresponding column added
to another row and corresponding column does not change
the value of pfaffian.

Any real skew-symmetric matrix can be brought to block-
diagonal form by an orthogonal transformation. Recursive
evaluation �Eq. �3�� then implies that the pfaffian of block-
diagonal matrix is directly given by

pf�
0 �1

− �1 0 0

0 �2

− �2 0

�

0 0 �n

− �n 0

	 = �1�2 ¯ �n.

�6�

Therefore, by employing a simple Gaussian elimination tech-
nique with row pivoting, we can transform any skew-
symmetric matrix into block-diagonal form and obtain its
pfaffian value in O�n3� time.

However, in QMC applications, one often needs to evalu-
ate the wavefunction after a single electron update. Since
Cayley27 showed �for proof see Appendix� that

det�
0 b12 b13 . . . b1,n

− a12 0 a23 . . . a2,n

− a13 − a23 0 . . . a3,n

] ] ] � ]

− a1,n − a2,n − a3,n . . . 0
	

= pf�
0 a12 a13 . . . a1,n

− a12 0 a23 . . . a2,n

− a13 − a23 0 . . . a3,n

] ] ] � ]

− a1,n − a2,n − a3,n . . . 0
	

�pf�
0 b12 b13 . . . b1,n

− b12 0 a23 . . . a2,n

− b13 − a23 0 . . . a3,n

] ] ] � ]

− b1,n − a2,n − a3,n . . . 0
	 , �7�

we can relate the pfaffian of original matrix pf�A� to the
pfaffian of a matrix with updated first row and column pf�B�
using the inverse matrix A−1 in only O�n� operations by

pf�B� =
det�A�� jb1jAj1

−1

pf�A�
= pf�A��

j

b1jAj1
−1. �8�

The second part of Eq. �8� was obtained by taking advantage
of the identity in Eq. �5b�. Slightly more complicated relation
between pf�A� and pf�B� can be derived if one considers
simultaneous change of two separate rows and/or columns,
which represents a two electron update of the wavefunction.

C. Gradient and Hessian of pfaffian

If the elements of matrix A depend on some variational
parameters �ci�, one can derive the following useful expres-
sions �see Sec. IV� for gradient and Hessian of pfaffian:

1

pf�A�
�pf�A�

�ci
=

1

2
tr�A−1 �A

�ci
� �9�

and

1

pf�A�
�2pf�A�
�ci�cj

=
1

2
tr�A−1 �2A

�ci�cj
� −

1

2
tr�A−1 �A

�ci
A−1 �A

�cj
�

+
1

4
tr�A−1 �A

�ci
�tr�A−1 �A

�cj
� , �10�

where A−1 is again the inverse of A.

III. PAIRING WAVEFUNCTIONS

In order to contrast the properties of pair wavefunctions
with the wavefunctions build from one-particle orbitals, we
will first recall the well-known fact from the Hartree-Fock
theory. The simplest antisymmetric wavefunction for N elec-
trons constructed from one-particle orbitals is the Slater de-
terminant

�HF = det��̃k�ri,si�� = det��̃k�i��, i,k = 1, . . . ,N , �11�

where the tilde means that the one-particle states depend on
both space and spin variables. Clearly, for N electrons, this
requires N linearly independent spin-orbitals which form an
orthogonal set in canonical HF formulation.

Let us now consider the generalization of the one-particle
orbital to a two-particle �or pair� orbital 	̃�i , j�, where the
tilde again denotes dependence on both spatial and spin vari-
ables. The simplest antisymmetric wavefunction for 2N elec-
trons constructed from the pair orbital is a pfaffian,

� = A�	̃�1,2�,	̃�3,4� ¯ 	̃�2N − 1,2N�� = pf�	̃�i, j�� .

�12�

The antisymmetry is guaranteed by the definition �1�, since
the signs of pair partitions alternate depending on the parity
of the corresponding permutation. The important difference
from Slater determinant is that in the simplest case only one
pair orbital is necessary. �This can be generalized, of course,
as will be shown later.� If we further restrict our description
to systems with collinear spins, the pair orbital 	̃�ri ,si ;r j ,sj�
for two electrons in positions ri and r j and with spin projec-
tions si and sj can be expressed as
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	̃�ri,si;r j,sj� = 	�i, j��sisj���↑↓� − �↓↑��/�2 + 
↑↑�i, j��sisj�↑↑�

+ 
↑↓�i, j��sisj���↑↓� + �↓↑��/�2

+ 
↓↓�i, j��sisj�↓↓� . �13�

Here, 	�i , j�=	�ri ,r j� is even, while 
↑↑, 
↑↓, and 
↓↓ are
odd functions of spatial coordinates. In the rest of this sec-
tion, we will discuss special cases of wavefunction �12�.

A. Singlet pairing wavefunction

Let us consider the first i=1,2 , . . . ,N electrons to be
spin-up and the rest j=N+1, . . . ,2N electrons to be spin-
down and allow only 	�ri ,r j� in 	̃�ri ,si ;r j ,sj� to be nonzero.
Using the pfaffian identity �Eq. �5e��, we can write the wave-
function for N singlet pairs, also known as the BCS wave-
function, in the following form:

�BCS = pf� 0 �↑↓

− �↑↓T 0
� = det��↑↓� , �14�

which is simply a determinant of the N�N matrix �↑↓

= �	�i , j��, as was shown previously.17

It is straightforward to show that the BCS wavefunction
contains the restricted HF wavefunction as a special case. Let
us define the Slater matrix C= ��i�j��, where ��i� is a set of
HF occupied orbitals. Then, we can write

�HF = det�C�det�C� = det�CCT� = det��HF
↑↓ � , �15�

where

��HF
↑↓ �i,j = 	HF�i, j� = �

k=1

N

�k�i��k�j� . �16�

On the other hand, we can think of the BCS wavefunction as
a natural generalization of the HF one. To do so, we write the
singlet pair orbital as

	�i, j� = �
k,l

�N

Sk,l�k�i��l�j� = ��i�S��j� , �17�

where the sum runs over all �occupied and virtual� single-
particle orbitals and S is some symmetric matrix. Therefore,
we can define one-particle orbitals which diagonalize this
matrix and call them natural orbitals of a singlet pair.

The BCS wavefunction is efficient for describing systems
with single-band correlations such as Cooper pairs in con-
ventional BCS superconductors where pairs form from one-
particle states close to the Fermi level.

B. Triplet pairing wavefunction

Let us assume, in our system of 2N electrons, that the first
M1 are spin-up and remaining M2=2N−M1 are spin-down.
Further, we restrict M1 and M2 to be even numbers. Then by
allowing only 
↑↑�i , j� and 
↓↓�i , j� in �13� to be nonzero, we
obtain from �12� by the use of Eq. �5c�

�T = pf��↑↑ 0

0 �↓↓� = pf��↑↑�pf��↓↓� , �18�

where we have introduced M1�M1�M2�M2� matrices
�↑↑�↓↓�= �
↑↑�↓↓��i , j��. To our knowledge, this result was
never explicitly stated and only the weaker statement that the
square of wavefunction simplifies to a product of determi-
nants has been given.17

The connection to a restricted HF wavefunction for the
above state can be again established as follows. In accord
with what we defined above, det�C↑�↓�� are spin-up �-down�
Slater determinants of some HF orbitals ��i�. Then, by taking
advantage of Eq. �5e�, we can write

�HF = det�C↑�det�C↓� =
pf�C↑A1C↑T�pf�C↓A2C↓T�

pf�A1�pf�A2�
,

�19�

given A1 and A2 are some skew-symmetric nonsingular ma-
trices. In the simplest case, when A1 and A2 have block-
diagonal form with all values �i=1, one gets

�HF = pf��HF
↑↑ �pf��HF

↓↓ � . �20�

The pair orbitals can be then expressed as

��HF
↑↑�↓↓��i,j = 
HF

↑↑�↓↓��i, j�

= �
k=1

M1�M2�/2

��2k−1�i��2k�j� − �2k−1�j��2k�i�� . �21�

Similar to the singlet pairing case, one can also think of
triplet pairing as a natural generalization of the HF wave-
function. To do so, we write the triplet pair orbitals as


�i, j�↑↑�↓↓� = �
k,l

�M1�M2�

Ak,l
↑↑�↓↓��k�i��l�j� = ��i�A↑↑�↓↓���j� ,

�22�

where again the sum runs over all �occupied and virtual�
single-particle orbitals and A↑↑�↓↓� are some skew-symmetric
matrices. Therefore, we can define one-particle orbitals
which block diagonalize these matrices and call them natural
orbitals of a triplet spin-up-up (down-down) pair.

C. Generalized pairing wavefunction

Let us now consider a partially spin-polarized system with
unpaired electrons. In order to introduce both types of pair-
ing, we allow 
↑↑�i , j�, 
↓↓�i , j� and 	�i , j� in �13� to be non-
zero. However, we omit the 
↑↓�i , j� term. Then our usual
ordered choice of electron labels, with all spin-up electrons
first and remaining electrons spin-down, enables us to di-
rectly write from �12� the singlet-triplet-unpaired �STU� or-
bital pfaffian wavefunction,1

�STU = pf� �↑↑ �↑↓ �↑

− �↑↓T �↓↓ �↓

− �↑T − �↓T 0
	 , �23�
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where the bold symbols are block matrices and vectors of
corresponding orbitals as defined in Secs. III A and III B and
T denotes transposition. Let us note that for a spin-restricted
STU wavefunction the pair and one-particle orbitals of
spin-up and -down channels would be identical.

The above pfaffian form can accommodate both singlet
and triplet pairs as well as one-particle unpaired orbitals into
a single, compact wavefunction. The correspondence of STU
pfaffian wavefunction to HF wavefunction can be established
in a similar way to the pure singlet and triplet pairing cases.

IV. PAIRING WAVEFUNCTION RESULTS

We perform the variational and fixed-node diffusion
Monte Carlo �VMC and DMC� calculations6,7 with the pfaff-
ian pairing wavefunctions. As we mentioned earlier, the trial
variational wavefunction is a product of an antisymmetric
part �A times the Jastrow correlation factor

�T�R� = �A�R�exp�Ucorr��rij�,�riI�,�riJ��� , �24�

where Ucorr depends on electron-electron, electron-ion and,
possibly, on electron-electron-ion combinations of
distances.7,30,31 Previously, we have reported1 the results with
antisymmetric part being equal to �A=�HF, �A=�BCS, and
�A=�STU. We extend this work to different linear combina-
tions of pfaffians. The pair orbitals were expanded in prod-
ucts of a one-particle orbital basis according to Eqs. �17� and
�22�. The expansions include both occupied and virtual one-
particle orbitals from either Hartree-Fock or CI correlated
calculations.11 The pair orbital expansion coefficients were
then optimized in VMC by minimizations of energy, vari-
ance, or a combination of energy and variance.30 The opti-
mization procedure requires the calculation of gradient and
the Hessian of the wavefunction according to Eqs. �9� and
�10�. We used pseudopotentials32 to eliminate the atomic
cores.

TABLE I. Total energies for C, N, and O atoms and their dimers with amounts of the correlation energy
recovered in VMC and DMC methods with wavefunctions as discussed in the text. Unless noted otherwise,
the numbers in parentheses are the statistical errors in the last digit from corresponding QMC calculation.
Energies are in Hartree a.u. For C, N, and O atoms, we used the correlation energies by Dolg �Ref. 55�
�0.1031, 0.1303, and 0.1937 a.u.�. For the estimation of correlation energies of dimers, we needed accurate
HF energies at experimental distances �Ref. 56� and the estimated exact total energies. Each exact total
energy was estimated as a sum of total energies of constituent atoms minus experimental binding energy
�Ref. 55–58� adjusted for experimental zero-point energy �Ref. 58�.

Method WF C
Ecorr

�%� N
Ecorr

�%� O
Ecorr

�%�

HF S −5.31471 0 −9.62892 0 −15.65851 0

VMC SJ −5.3939�4� 76.8�4� −9.7375�1� 83.3�1� −15.8210�6� 83.9�3�
BCS −5.4061�2� 88.6�2� −9.7427�3� 87.3�2� −15.8250�3� 86.0�2�
STU −5.4068�2� 89.3�2� −9.7433�1� 87.8�1� −15.8255�3� 86.2�2�

DMC SJ −5.4061�3� 88.6�2� −9.7496�2� 92.6�2� −15.8421�2� 94.8�1�
BCS −5.4140�2� 96.3�2� −9.7536�2� 95.7�2� −15.8439�4� 95.7�2�
STU −5.4139�2� 96.2�2� −9.7551�2� 96.8�1� −15.8433�3� 95.4�2�

Est. Exact −5.417806 100 −9.759215 100 −15.85216 100

Method WF C2 Ecorr

�%�
N2 Ecorr

�%�
O2 Ecorr

�%�

HF S −10.6604 0 −19.4504 0 −31.3580 0

VMC SJ −10.9579�4� 72.9�1� −19.7958�5� 80.0�1� −31.7858�6� 79.6�1�
BCS −11.0059�4� 84.7�1� −19.8179�6� 85.0�1� −31.8237�4� 86.7�1�
STU −11.0062�3� 84.8�1� −19.821�1� 85.8�2� −31.8234�4� 86.6�1�

DMC HF −11.0153�4� 87.0�1� −19.8521�3� 93.0�1� −31.8649�5� 94.3�1�
BCS −11.0416�3� 93.5�1� −19.8605�6� 94.9�1� −31.8664�5� 94.6�1�
STU −11.0421�5� 93.6�1� −19.8607�4� 95.0�1� −31.8654�5� 94.4�1�

Est. Exacta −11.068�5�b 100.0�10� −19.8825�6�c 100.0�1� −31.8954�1�c 100.0�1�
aThe error bars on estimated exact total energies are due to experiment.
bThere is rather large discrepancy in the experimental values of C2 binding energy �141.8�9� �Ref. 56�, 143�3�
�Ref. 58�, and 145.2�5� kcal /mol� �Ref. 57�. For the estimation of exact energy, we have taken the average
value of 143�3� kcal /mol.
cExperimental binding energies taken from Ref. 56
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A. Single- and multipfaffian calculations

The results of a single-pfaffian wavefunction calculations
when applied to the first row atoms and dimers were reported
in our previous paper.1 However, for completeness, we sum-
marize all total and correlation energies in Table I. A system-
atic high percentage of recovered correlation energy on the
level of 94%–97% in DMC method with generally low trip-
let contributions was observed.

Further, the tests of multipfaffian �MPF� wavefunction of
the form

�MPF = pf�
1
↑↑,
1

↓↓,	1,�1� + pf�
2
↑↑,
2

↓↓,	2,�2� + . . .

�25�

for atomic systems were also discussed in our previous
study.1 A small number of pfaffians were shown to recover
another significant fraction of the missing correlation energy
comparable to much more extensive configuration interac-
tion expansions in determinants.

In this work, we extend the application of MPF wavefunc-
tions to the diatomic cases �Table II�. However, only very
limited gain over single STU pfaffian WF was achieved for
MPF wavefunctions with few pfaffians. We therefore con-
clude that for obtaining significantly larger gains in correla-
tion energy, the molecular wavefunctions require much
larger expansions.

B. Antisymmetrized product of geminals

We have also tested the fully antisymmetrized product of
geminals �or singlet independent pairs� wavefunction, which
introduces one pair orbital per each electron pair. For system
of 2N fermions in singlet state, the APG wavefunction can be
written as

�APG = A�	̃1�1,2�,	̃2�3,4�, . . . ,	̃N�2N − 1,2N��

= �
P

pf�	̃i1
�1,2�,	̃i2

�3,4�, . . . ,	̃iN
�2N − 1,2N�� ,

�26�

where the last equation corresponds to the sum over all N!
possible permutations of N different pair orbitals 	̃i for each

pfaffian. Recently, the APG wavefunction was used also by
Rassolov33 in the form of an strongly orthogonal geminals.
Our results for C and N dimers using APG wavefunctions in
the VMC and DMC methods are given in Table II.

Consideration of independent pairs results in an exponen-
tial increase of number of pfaffians. However, captured cor-
relation energy is on the level of small MPF expansion and
significantly less than CI with reoptimized weights using the
same one-particle orbitals. This suggests that to achieve
more correlation energy in larger systems, we have to go
beyond double pairing.

C. Nodal properties

The fermion node is defined by an implicit equation
��R�=0 and for N electrons it is a �3N−1�-dimensional hy-
persurface. With exception of few exact cases, the nodes of
trial and/or variational wavefunctions introduce bias into
fixed-node DMC energies. Recently, a number of authors
have reported improvement in nodal structure of trial
wavefunctions.1,2,18,19,34,35

The effect of pairing correlations on nodes can be high-
lighted by direct comparison. Figure 1 shows the example of
nodal structure of oxygen atom. Here, we compare the nodal
surfaces of HF �no pairing�, MPF pfaffian �STU pairing�, and
a high accuracy CI wave function with more than 3000 de-
terminants, which gives essentially exact fermion nodes �i.e.,
99.8�3�% of correlation energy in fixed-node DMC�.

It is clear that the changes in the nodal surfaces are sig-
nificant, the most important one being the elimination of ar-
tificial four nodal cells resulting from the independence of
spin-up and -down channels in HF. The pfaffian smooths out
the crossings and fuses the compartments of the same sign
into the single ones. These topology changes therefore lead
to the minimal number of two nodal cells, an effect observed
in correlated context previously.36–39 However, the nodes of
the pfaffian wavefunctions could be further improved if the
scheme for direct optimization of nodes of trial wavefunc-
tions were used.20,40 Additional result from our work is that
despite such a substantial change in the nodal structure the
amount of missing correlation energy is still non-negligible.

V. BACKFLOW CORRELATED WAVEFUNCTIONS

Another route to improvement of the trial wavefunction
and its nodal structure is through the introduction of back-

TABLE II. Total energies for C and N dimers with amounts of correlation energy recovered in VMC and
DMC methods with wavefunctions as discussed in the text. The corresponding number of pfaffians and/or
determinants n for each wavefunction is also shown. See caption of Table III for a more detailed description.

Method WF n C2

Ecorr

�%� n N2

Ecorr

�%�

VMC MPF 5 −11.0187�2� 87.8�1� 5 −19.8357�3� 89.2�1�
APG 4! −11.0205�4� 88.3�1� 5! −19.8350�3� 89.0�1�
CIa 148 −11.0427�1� 93.7�1� 143 −19.8463�9� 91.6�2�

DMC MPF 5 −11.0437�4� 94.0�1� 5 −19.8623�5� 95.3�1�
APG 4! −11.0435�7� 94.0�2� 5! −19.8611�3� 95.0�1�
CIa 148 −11.0573�2� 97.3�1� 143 −19.875�2� 98.3�5�

aThe determinantal weights were reoptimized in the VMC method.
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flow correlations.2,3,41–49 Given the form of our trial wave-
function, Eq. �24�, its nodal structure is completely defined
by the nodes of the antisymmetric part �A�R�. The backflow
correlations are then introduced by replacing �A�R� by
�A�X�, where X= �x1 ,x2 , . . . � are some quasicoordinates de-
pendent on all-electron positions R, such that overall anti-
symmetry is preserved. Consequently, if X is made depen-
dent on some variational parameters, we can decrease the
fixed-node errors by further optimizing �A�X�.

The implementation of the backflow correlations into
Slater determinant and pfaffian wavefunctions closely fol-
lows the approach of Kwon et al.46 and Rios et al.3 The

quasicoordinate of ith electron at position ri is given as

xi = ri + �i�R� = ri + �i
en�R� + �i

ee�R� + �i
een�R� , �27�

where �i is the ith electron’s backflow displacement divided
to the contributions from one-body �electron-nucleus�, two-
body �electron-electron�, and three-body �electron-electron-
nucleus� terms. They can be further expressed as

�i
en�R� = �

I

��riI�riI,

FIG. 1. �Color online� A three-
dimensional cut through the fer-
mion node hypersurface of oxy-
gen atom obtained by scanning
the wavefunction with a spin-up
and -down �singlet� pair of elec-
trons at equal positions, while
keeping the rest of electrons at a
given VMC snapshot positions
�small green spheres�. Nucleus is
depicted in the center of the cube
by the blue sphere. The three col-
ors �from left to right� show nodes
of: Hartree-Fock �red and/or dark
gray�, multipfaffian nodes �orange
and/or medium gray�, and the
nodes of the CI wave function
�yellow and/or light gray� in two
different views �upper and lower
rows�. The CI nodal surface is
very close to the exact one �see
text�. The HF node clearly divides
the space into four nodal cells
while pfaffian and CI wavefunc-
tions partitioning leads to the
minimal number of two nodal
cells. The changes in the nodal to-
pology occur on the appreciable
spatial scale of the order of 1 a.u.
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�i
ee�R� = �

j�i


�rij�rij ,

�i
een�R� = �

I
�
j�i

��1�rij,riI,rjI�rij + �2�rij,riI,rjI�riI� ,

�28�

where rij =ri−r j, riI=ri−rI and we sum over all nuclei I and
electrons j. The �, 
, and �1 with �2 terms are similar to
one-, two-, and three-body Jastrow terms present in Ucorr of
trial wavefunction, Eq. �24�, and are further expanded as

��r� = �
k

ckak�r� ,


�r� = �
k

dkbk�r� ,

�1�2��rij,riI,rjI� = �
klm

gklm
1�2�ak�riI�al�rjI�bm�rij� . �29�

VI. BACKFLOW WAVEFUNCTION RESULTS

In this section, we present VMC and DMC results ob-
tained with above implementation of backflow correlations
for determinant and pfaffian wavefunctions. The Jastrow fac-
tors and pseudopotentials are identical to the ones used in
Sec. IV. The distance-dependent basis functions �a� and �b�
used in the Eq. �29� are chosen either as Gaussians centered
on the nucleus or polynomial Padé functions31 to preserve
the electron-electron and electron-nucleus �when used with
pseudopotentials� cusp conditions.50,51 The sets of variational
parameters �c�, �d�, and �g� are minimized in the similar
fashion as in Sec. IV with respect to energy or mixture of
energy and variance.30 In addition, all electron-electron co-
efficients ��dk� and �gklm

1�2�� with fixed k and l� are allowed to
be different for spinlike and for spin-unlike electron pairs.

A. Homogeneous electron gas

We benchmark our implementation of the backflow cor-
relations on the homogeneous electron gas �HEG�. The HEG
system of 54 unpolarized electrons in the simple cubic simu-
lation cell with periodic boundary conditions was studied
before.3,48,49 We use the backflow displacement, Eq. �27�,
with only �i

ee being nonzero and let 
�r� in Eq. �28� to be
different for spinlike and for spin-unlike electron pairs.
These functions are further expanded in the basis of polyno-
mial Padé functions31 with cutoff equal to half of the simu-
lation cell.

We compare our results for the following three densities
of rs=1, 5, and 20 �see Table III�. First, it is clear that the HF
and Slater-Jastrow �SJ� fixed-node DMC energies are in
good agreement with previous results.3,48,49 Second, due to
the omission of the three-body correlations from Jastrow fac-
tor and also from backflow displacement, it is expected that
we obtain higher VMC energies and variances for SJ and
backflow displaced SJ �SJBF� trial wavefunctions. Neverthe-

less, our fixed-node DMC energies for SJBF trial wavefunc-
tions closely match the results of Kwon et al.,48 and only
slightly deviate at higher densities from results of Rios et al.3

B. Carbon atom and dimer

The backflow correlations in single-determinant Slater-
Jastrow trial wavefunctions were recently applied also to in-
homogeneous systems.2,3,52 They were demonstrated to cap-
ture additional few percent of the correlation energy but
being somewhat shy of the goal of more than 99%, with the
only exception of Li atom. It was also suggested that the
backflow by itself is unlikely to change the number of nodal
cells. These observations let to further studies of backflow
combined with the wavefunctions that have the minimal
number of nodal cells—an important topological property
associated with ground state wavefunctions.36–39 One of the
successes of this scheme are the very recent results of Brown
et al.53 obtained from backflow correlated CI-Jastrow wave-
functions applied to first row all-electron atoms. In this
study, we further test the limits of the backflow correlations
to decrease the fixed-node errors of the CI-Jastrow wave-
functions and, for the first time, also include backflow into
the pfaffian-Jastrow pairing wavefunctions. Below is a brief
discussion of our implementation and results for carbon atom
and dimer systems.

In the inhomogeneous backflow, each electron’s coordi-
nate is correlated by the displacement as given by Eq. �27�,
while the functions 
 and �1,2 are allowed to be spin depen-
dent. We use up to 11 Gaussian basis functions to fit the �
and 
 functions, while the three-body functions �1,2 are lim-
ited to a product of 4�4�4 Gaussians. The main results are
plotted in Figs. 2 and 3 and detailed numerical results are

TABLE III. VMC and fixed-node DMC energies per electron
and variances of local energies for various trial wavefunctions �S,
Slater; SJ, Slater-Jastrow; SJBF, backflow correlated SJ� for three-
dimensional unpolarized HEG of 54 electrons.

rs Method WF
E /N

�a.u./electron�
�2

�a.u.�

1.0 HF S 0.56925�2� 19.3�1�
VMC SJ 0.53360�4� 1.26�4�

SJBF 0.53139�4� 0.81�4�
DMC SJ 0.53087�4�

SJBF 0.52990�4�
5.0 HF S −0.056297�7� 0.776�4�

VMC SJ −0.075941�6� 0.0636�1�
SJBF −0.078087�4� 0.0236�1�

DMC SJ −0.07862�1�
SJBF −0.07886�1�

20.0 HF S −0.022051�2� 0.0482�1�
VMC SJ −0.031692�2� 0.000711�4�

SJBF −0.031862�1� 0.000437�1�
DMC SJ −0.031948�2�

SJBF −0.032007�2�
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summarized in Tables IV and V. The backflow correlations
are able to capture additional few percent of the correlation
energy for both Slater-Jastrow and pfaffian-Jastrow wave-
functions. Another important feature of backflow is 20%–
30% decrease in variances of local energy with respect to the
wavefunctions without backflow correlations. We find that
for the fully optimized backflow, the spin-unlike electron-
electron functions are almost order of magnitude larger than
spinlike ones as well as electron-nucleus functions. The
gains are systematic with increasing number of parameters;
however, we do not find the three-body terms as important as
reported in previous study.3 This difference can be attributed
to two main reasons—we use a different basis to expand the
three-body functions �1,2 and we also eliminate atomic cores
by pseudopotentials. It is plausible that for systems with core
electrons the three-body correlations are more important due
to the strong variations of orbitals close to the nucleus.

Finally, let us discuss the difference between the two sys-
tems with respect to missing correlation energy. For the C
atom, we have shown previously1 that less than 100 determi-
nants give more than 99% of correlation energy �Ecorr�. The
C dimer’s fixed-node errors are more pronounced, since the
148 determinants with reoptimized weights give only
97.5�1�% in a close agreement with recent calculations by
Umrigar et al.35 Employing backflow correlations for our
148 determinant CI-Jastrow wavefunction gives no apparent
gain in Ecorr except for decrease in the variance of local
energy. The improvement for the pfaffian-Jastrow wavefunc-
tion is also very modest �less than 1%�. Our results suggest
that to reach beyond 99% of correlation, one still needs com-
plicated multireference wavefunctions, even after including
quite general forms of the backflow correlations.

VII. CONCLUSIONS

To summarize, we have proposed pfaffians with singlet
pair, triplet pair, and unpaired orbitals as variationally rich
and compact wavefunctions. They offer significant and sys-
tematic improvements over commonly used Slater
determinant-based wavefunctions. We have included a set of
key mathematical identities with proofs, which are needed
for the evaluation and update of the pfaffians. We have also
shown connections of HF and BCS wavefunctions to more
general pfaffian wavefunction. Further, we have explored
multipfaffian wavefunctions, which enabled us to capture ad-
ditional correlation. While for atomic systems the results are
comparable to large-scale CI wave functions,1 equivalent ac-
curacy in molecular systems most probably require much
larger multipfaffian expansions than we have explored. As
another test of the variational potential of pairing, we have
employed the fully antisymmetrized independent pair wave-
function in pfaffian form and we have found that it does not
lead to additional gains in correlation energy. We therefore
conclude that more general functional forms together with
more robust large-scale optimization methods might be nec-
essary in order to obtain further improvements. The gains in
correlation energy for pfaffians come from improved fermion
nodes which are significantly closer to the exact ones than
the HF nodes and exhibit the correct topology with the mini-
mal number of two nodal cells.

In the second part of the paper, we have presented the
application of pfaffian and multideterminantal wavefunctions
with backflow correlations to chemical systems. The results
for two testing cases of C atom and its dimer show promising
gains in correlation energies, decreases in variances, and im-
provements in the nodal structure. Our results also indicate
that accurate description of molecular systems with fixed-
node errors below 1% of correlation energy requires opti-
mized multireference wavefunctions and inclusion of back-
flow then appears less favorable considering significant
computational cost, especially for evaluation of the nonlocal
pseudopotential operators.
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FIG. 2. �Color online� Upper figure: Percentages of correlation
energy from VMC and DMC methods versus a number of backflow
parameters with backflow correlated Slater-Jastrow �SJBF�,
pfaffian-Jastrow �PFBF�, and CI-Jastrow �CIBF� trial wavefunc-
tions for C atom �2B, electron-nucleus and electron-electron terms;
3B, all electron-electron-nucleus terms; 23B for all terms together�.
Lines connecting the points serve only as a guide to the eye. Lower
figure: Variance of the local energy versus a number of backflow
parameters.
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FIG. 3. �Color online� Same as Fig. 2 but for C dimer.
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APPENDIX: PROOF OF CAYLEY’S IDENTITY

In order to prove the statement in Eq. �7�, we will proceed
by induction. For n=2, it is true that

det� 0 b12

− a12 0
� = pf� 0 b12

− b12 0
�pf� 0 a12

− a12 0
� .

For even n greater than 2, determinant of the matrix of in-
terest can be expanded through its cofactors as

det�
0 b12 b13 . . . b1,n

− a12 0 a23 . . . a2,n

− a13 − a23 0 . . . a3,n

] ] ] � ]

− a1,n − a2,n − a3,n . . . 0
	

= �
k

− a1,kC�k,1� = �
k

�
l

− a1,kb1,lC�k,1;1,l� .

�A1�

The cofactor can be written as

C�k,1;1,l� = �− 1�k+l+1 det�A�k,1;1,l�� , �A2�

where the cofactor matrix is given by

TABLE IV. VMC and DMC energies and variances of local energy for Slater-Jastrow �SJ�, pfaffian-
Jastrow �PF�, and CI-Jastrow �CI� trial wavefunctions with backflow �BF� correlations for C atom. Notation
is the same as in Fig. 2.

Method WF N� N
 N�1
N�2

Np

E
�a.u.�

�2

�a.u.�
E

�%�

HF S −5.31471 0.0

VMC SJ −5.3990�1� 0.0677 81.8�1�
SJBF2B 11 22 33 −5.4011�2� 0.0544 83.8�2�
SJBF3B 128 128 256 −5.4023�3� 0.0504 85.0�3�
SJBF23B 4 8 128 128 268 −5.4020�2� 0.0498 84.7�2�

PF −5.4083�2� 0.0626 90.8�2�
PFBF2B 11 22 33 −5.4097�1� 0.0427 92.1�1�
PFBF23B 4 8 128 128 268 −5.4107�1� 0.0411 93.1�1�

CIa −5.4127�1� 0.0447 95.0�1�
CIBF2B 11 22 33 −5.4131�3� 0.0427 95.4�3�
CIBF23B 4 8 128 128 268 −5.4140�1� 0.0342 96.3�1�

DMC SJ −5.40653�3� 89.0�3�
SJBF2B 11 22 33 −5.4090�3� 91.5�3�
SJBF3B 128 128 256 −5.4085�3� 91.0�3�
SJBF23B 4 8 128 128 268 −5.4094�3� 91.8�3�

PF −5.4137�3� 96.0�3�
PFBF2B 11 22 33 −5.4145�3� 96.8�3�
PFBF23B 4 8 128 128 268 −5.4152�3� 97.5�3�

CI −5.4178�1� 100.0�1�
CIBF2B 11 22 33 −5.4177�3� 99.9�3�
CIBF23B 4 8 128 128 268 −5.4174�2� 99.6�2�

Est. Exact −5.417806 100.0

aWavefunction consists of 100 determinants reoptimized in VMC.
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A�k,1;1,l� = �
0 a23 . . . a2,k . . . a2,n

− a23 0 . . . a3,k . . . a3,n

] ] � ] � ]

− a2,l − a3,l . . . − ak,l . . . al,n

] ] � ] � ]

− a2,n − a3,n . . . − ak,n . . . 0

	 .

�A3�

At this point, we would like to use an induction step and
rewrite the determinant cofactor as a product of two pfaffians
�Cayley’s identity, Eq. �7��. This would allow us to demon-
strate that the expansion is identical to the expansion of pfaf-
fians in minors. In order to do so, however, we have to shift
the kth column by pair column exchanges, so it becomes the
last column and, similarly, we have to shift the lth row by
pair exchanges, so it becomes the last row. This involves k
pair exchanges of columns and l pair exchanges or rows and
can be represented by unitary matrices Uk and Ul. It is nec-
essary to invoke these operations so that the matrix gets into
a form directly amenable for Cayley’s identity, i.e., the ma-
trix has to be in a manifestly skew-symmetric form. �The
sign change from the row and/or columns exchanges will

prove irrelevant as we will show below.� The transformed
matrix is given by

A��k,1;1,l� = UkA�k,1;1,l�Ul �A4�

and has all zeros on the diagonal with the exception of the
last element which is equal to −ak,l. The last row is given by

vr = �− a2,l, . . . ,− ak−1,l,− ak+1,l, . . . ,

− al−1,l,al,l+1, . . . ,al,n,− ak,l� , �A5�

while the last column is given as follows:

vc
T = �a2,k, . . . ,ak−1,k,− ak,k+1, . . . ,− ak,l−1,

− ak,l+1, . . . ,− ak,n,− ak,l�T. �A6�

The only nonzero diagonal element −ak,l can be eliminated,
once we realize that its cofactor contains a determinant of a
skew-symmetric matrix of odd degree which always van-
ishes �proof by Jacobi54�.

Now we are ready to perform the induction step,
namely, to use the property that the determinant of a
2�n−1��2�n−1� matrix can be written as given by Cayley’s
identity, Eq. �7�. We obtain

TABLE V. Slater-Jastrow �SJ�, pfaffian-Jastrow �PF�, and CI-Jastrow �CI� wavefunctions with backflow �BF� correlations for C dimer.
Notation is the same as in Fig. 2.

Method WF N� N
 N�1
N�2

Np

E
�a.u.�

�2

�a.u.�
Ecorr

�%�

HF S −10.6604 0.0

VMC SJa −10.9936�4� 0.179 81.7�1�
SJBF2B 11 22 33 −11.0012�3� 0.144 83.5�1�

SJBF23B 4 8 128 128 268 −11.0014�2� 0.141 83.6�1�
PFb −11.0171�2� 0.160 87.4�1�

PFBF2B 11 22 33 −11.0223�3� 0.123 88.7�1�
PFBF23B 4 8 128 128 268 −11.0223�2� 0.128 88.7�1�

CIc −11.0420�4� 0.112 93.6�1�
CIBF2B 11 22 33 −11.0440�3� 0.100 94.0�1�
CIBF23B 4 8 128 128 268 −11.0438�3� 0.123 94.0�1�

DMC SJ −11.0227�2� 88.8�1�
SJBF2B 11 22 33 −11.0269�4� 89.9�1�
SJBF23B 4 8 128 128 268 −11.0280�3� 90.1�1�

PF −11.0419�9� 93.5�2�
PFBF2B 11 22 33 −11.0443�6� 94.1�2�

PFBF23B 4 8 128 128 268 −11.0447�3� 94.2�1�
CI −11.0579�5� 97.5�1�

CIBF2B 11 22 33 −11.0580�4� 97.5�1�
CIBF23B 4 8 128 128 268 −11.0585�5� 97.7�1�

Est. Exact −11.068�5� 100.0

aSlater determinant contains PBE DFT orbitals.
bSame PBE DFT orbitals are used also in PF wave function.
cUses natural orbitals with weights of the 148 determinants reoptimized in VMC.
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det�UkA�k,1;1,l�Ul� = det�A��k,1;1,l��

= pf�A��1,k;1,k��pf�A��1,l;1,l�� .

�A7�

We can now apply the inverse unitary transformations and
shift back the columns �and by the skew-symmetry of the
corresponding rows� in the first pfaffian and, similarly, the
rows �and corresponding columns� in the second. This en-
ables us to write

pf�A��1,k;1,k��pf�A��1,l;1,l��

= pf�Ul
−1A�1,k;1,k�Ul�pf�UkA�1,l;1,l�Uk

−1�

= pf�A�1,k;1,k��pf�A�1,l;1,l�� , �A8�

where we have used the identity given by Eq. �5d�. We can
therefore finally write

C�k,1;1,l� = �− 1�k+l+1pf�A�1,k;1,k��pf�A�1,l;1,l��

= − Pc�a1,k�Pc�a1,l� , �A9�

where Pc denotes a pfaffian cofactor as defined in �4�. There-
fore, the determinant expansion in Eq. �A1� equals to

�
k,l

− a1,kb1,lC�k,1;1,l� = �
k,l

a1,kb1,lPc�a1,k�Pc�a1,l�

= pf�A�pf�B� , �A10�

with matrices A and B defined as in Eq. �8�. This concludes
the proof of the more general form of Cayley’s identity.
Note, if B=A, we trivially obtain well-known formula for the
square of pfaffian �Eq. �5b��.
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